High-brightness single photon source from a quantum dot in a directional-emission nanocavity.
نویسندگان
چکیده
We analyze a single photon source consisting of an InAs quantum dot coupled to a directional-emission photonic crystal (PC) cavity implemented in GaAs. On resonance, the dot's lifetime is reduced by more than 10 times, to 45 ps. Compared to the standard three-hole defect cavity, the perturbed PC cavity design improves the collection efficiency into an objective lens (NA = 0.75) by factor 4.5, and improves the coupling efficiency of the collected light into a single mode fiber by factor 1.9. The emission frequency is determined by the cavity mode, which is antibunched to g((2))(0) = 0.05. The cavity design also enables efficient coupling to a higher-order cavity mode for local optical excitation of cavity-coupled quantum dots.
منابع مشابه
Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling
High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanoc...
متن کاملUltrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonst...
متن کاملObservation of strongly entangled photon pairs from a nanowire quantum dot
A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semico...
متن کاملInGaAsP/InP Nanocavity for Single-Photon Source at 1.55-μm Telecommunication Band
A new structure of 1.55-μm pillar cavity is proposed. Consisting of InP-air-aperture and InGaAsP layers, this cavity can be fabricated by using a monolithic process, which was difficult for previous 1.55-μm pillar cavities. Owing to the air apertures and tapered distributed Bragg reflectors, such a pillar cavity with nanometer-scaled diameters can give a quality factor of 104-105 at 1.55 μm. Ca...
متن کاملExplanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system.
In a coupled quantum-dot-nanocavity system, the photoluminescence from an off-resonance cavity mode exhibits strong quantum correlations with the quantum-dot transitions, even though its autocorrelation function is classical. Using new pump-power dependent photon-correlation measurements, we demonstrate that this seemingly contradictory observation that has so far defied an explanation stems fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 17 17 شماره
صفحات -
تاریخ انتشار 2009